
September 9–11, 2013
Anaheim, California

Universe Building for Mere Mortals

Alan Mayer – Solid Ground Technologies
Session 0610

3

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

4

Dedicated to …

5

Introduction

• Co-founded Integra Solutions in 1993

• Used BusinessObjects since 1992
(Version 2.2)

• Wrote the first BusinessObjects training
manuals

• Over 75 Fortune 1000 customers before
company was sold in 2007

• Presented at every national conference
• Founded Solid Ground Technologies in 2009

• Different company – same principles
• Specialize in BusinessObjects

consulting and training

Alan Mayer

6

 Semantic layer that is created between data and the user

 Expressed in business terms that users understand

 Tables and joins are predefined

A Universe?

Universes Database Schema

Database Query

7

 Universes contain

 A connection to the data

 A structural representation of that data

 Business terms based on that structure

A Simple Definition

Structure Business

terms

8

 Two types can be built based on version

 .UNV

 Legacy universes created in any current version (XI 3.1, BI 4.x)

 To make things simpler, we’ll restrict .UNV to just XI 3.1

 .UNX

 New for BI 4.x installations

 Which should you build?

 Depends on your environment

 Certain new features only available in .UNX

 Multiple connections

 More data sources

Two Types of Universes

9

Another Way of Looking at it …

.unv

= .unv

.blx

.dfx

.cnx or .cns
+

+

= .unx

10

 Show how to build universes regardless of version

 Many basic concepts are the same

 Version-specific features will be pointed out

 Look for these symbols

 We’ll develop BOTH types of universes in this presentation!

Our Mission

3.1

4.x

.unv

.unx

11

 Create a project

 Add a data connection

 Define the structure by inserting tables and joins

 Resolve logical inconsistencies

 Create classes and objects

 Publish / export the final result

Our Instruction Manual

4.x

12

 Showing how universes are developed in 3.1 and 4.x is ambitious

 Especially in less than an hour

 Not much time for these topics:

 Detailed connection and parameter selections

 Performance tuning

 Federation

 Complex object and join creation

 Hierarchies / Navigation paths

 Aggregate navigation

 Security rules

Beyond Our Scope

13

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

14

 .UNV legacy universes can be created in either version

 Universe Design tool in BI 4.x

 Designer tool in XI 3.1

 Very little difference between these two tools

 Use the Information Design Tool (IDT) for .UNX

 Best way to proceed:

 Decide on which version (XI 3.1, BI 4.0)

 Decide on which universe type to create (.UNV, .UNX)

 Follow the slides for your choices

Use the Right Tool

15

 Must log into the Universe Designer as the first step

 No login necessary for IDT (.UNX)

Logging in 3.1

It is possible to
bypass the login by
setting Authentication
to Standalone. You
must have logged in
at least once prior to
trying.

16

 Developers must create a project to get started

 File > New > Project

 Projects contain:

 Connections

 Data Foundation layer (structure)

 Business layer (business terms)

Creating a Project 4.x

17

 Developers can create a new universe to get started

 File > New

Creating a Universe 3.1

18

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

19

 While in a project, create a new connection

 File > New > Relational Connection or OLAP Connection

 Relational Connection chosen below

Creating Project Connections 4.x

Connections to Excel
and text files also
available here.

20

 Additional connection choices

Creating Project Connections, cont’d 4.x

Relational OLAP

21

 Add login information to reach that data source

 Relational example

 User / password optional for MS Access, Excel, flat files

 Additional details go beyond the scope of this talk

Creating Project Connections, cont’d 4.x

22

 The initial connection is “local” (.cnx)

 Cannot be access by anyone but yourself

 Must be published for Webi-based universes

 Right click on connection > Publish Connection to Repository

Publishing the Connection 4.x

What if a connection
isn’t published?

Data foundations
could still use a local
connection, BUT …

Universes could not
be published based
on that connection

23

 The published connection can be stored in a folder

 Select a folder and click Finish

 Shortcut for the published connection is created (.cns)

 This shortcut can be used in Data Foundations

Publishing the Connection, cont’d 4.x

24

 Many connections can be created using the Universe Designer

 Only one of these may be used per universe

 Options may vary based on version (3.1 vs. 4.x)

Creating a Single .UNV Connection 3.1

25

 The connection should be secured for Enterprise use

 Meaning … other people have access to the connection

 A few differences from BI 4.x connections

 No connection folder

 Can secure at creation time

 Some of the data sources may not be available

Creating a Single .UNV Connection, cont’d 3.1

Connections must be
secured before
publishing the
universe. This allows
other Enterprise users
to use it

26

Demonstration 3.1 4.x

27

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

28

 Once a connection is created, structure can be defined

 In IDT, this is done by creating a Data Foundation layer (.dfx)

 File > New > Data foundation

Creating a Data Foundation 4.x

29

 Choose between single or multi-source

 Some data sources require the multi-source option

 This will involve federation techniques – beyond our scope

Creating a Data Foundation, cont’d 4.x

30

 Choose the secured connection

Creating a Data Foundation, cont’d 4.x

31

 Select the Insert menu drop-down

 Select Insert Tables …

 Select the club datasource and choose one or more tables

Adding Tables 4.x

32

 Arrange the tables in the order to be joined

Adding Tables, cont’d 4.x

33

 No concept of a data foundation

 The structure is part of the universe once created

 Initial Structure Pane window will be blank

Adding Structure 3.1

Structure Terms

34

 Use the Table Browser

 Open the club data source

 Select the tables needed then click Insert

 Arrange the tables in the order to be connected

Adding Tables 3.1

35

Demonstration 3.1 4.x

Copyri

ght ©

2004

Joins

 Relationships between tables can now be defined

 Known as joins, these relationships can take many forms

 Inner join

 Outer join

 Theta join

 Recursive join

 Self-restricting join

 Shortcut join

 The next few slides will explain each join type

3.1 4.x

Copyri

ght ©

2004

Inner Joins

 Also known as equi-joins or normal joins

 Usually take the the following form

 Single join: Primary Key (PK) = Foreign Key (FK)

 Compound Join: PK1 = FK1 and PK2 = FK2 and …

City.city_id=Customer.city_id

PK

FK

3.1 4.x

Copyri

ght ©

2004

Outer Joins

 Forces all rows from one table to be considered even if no
matching row exists in second table

 For example: “Return all customers and orders if they exist”

 Syntax varies based on database

 Outer joins CASCADE!

3.1 4.x

Copyri

ght ©

2004

Theta Joins

 Relates two tables using relationships other than equality

Customer.age
BETWEEN
Age_group.age_min and
Age_group.age_max

3.1 4.x

Copyri

ght ©

2004

Recursive Joins

 A row is related to other row(s) within the same table

 Example: A sponsor may be stored in the same table as their
 referrals

Customer.sponsor_id = Customer.cust_id

3.1 4.x

Copyri

ght ©

2004

Self-Restricting Joins

 A condition that should ALWAYS be applied against a table

 A universal condition rather than a join

 One way to force BusinessObjects to always add the condition to any
SQL statement that references that table

Country.country_id = 1

3.1 4.x

Copyri

ght ©

2004

Shortcut Joins

 Provides a shortcut or alternative path between tables

 Example: The Customer table may contain an extra column that
 allows a direct join to Country

Shortcut Join

Join Editor

3.1 4.x

Copyri

ght ©

2004

Join Cardinality

 Join cardinalities MUST be defined

 Cardinality determines the number of rows related to a current row

 They help resolve logical problems later

1:1
A salesperson has 1 customer;
A customer has 1 salesperson

1:Many
A salesperson has 1 or more customers;
A customer has one salesperson

A salesperson has 1 or more customers;
A customer has 1 or more salespersons

Many:

Many

3.1 4.x

Copyri

ght ©

2004

Setting Cardinalities

 Cardinalities can be established two different ways

 Automatic Detection (not as good)

 Manually via Join Editor (better)

Automatic

Manual

3.1 4.x

Copyri

ght ©

2004

Adding Joins

 Several methods

 Trace the join from one table to another

 Click and drag from one column to another

 Use the Join Editor

 Insert Menu > Insert Join

 Detect joins

 Tools > Automated Detection > Detect Joins

 From Data Foundation: Detect > Detect Joins

4.x 3.1

Detecting joins is not
a preferred strategy.
Additional joins may
be added that are
technically possible
but not realistic

3.1

4.x

46

Demonstration 3.1 4.x

47

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

Copyri

ght ©

2004

Loops

 A loop is created when two or more paths
exist between tables

 An employee can take a business trip to a country

 An employee is born in a country

Employee

Trips

Countries

Employees

Trips

Another definition:
Loops represent
“pools of water” that
cannot escape

4.x 3.1

Copyri

ght ©

2004

Loops, cont’d

 Detecting Loops

 Tools > Automated Detection > Detect Loops

 Aliases and Contexts > Visualize Loops

3.1

4.x

4.x 3.1

Why are loops bad?

SQL cannot be created
because there is more than
one path between tables

Copyri

ght ©

2004

Loops, cont’d

 Caution when using Detect tools ….

 Join cardinalities must be set!

 Else Detection may offer the wrong advice

 Always review the solutions offered

4.x 3.1

Copyri

ght ©

2004

Chasm Traps

 Look for logical traps

 The chasm trap is a common one

 Usually the result of a many to one,
one to many relationship

 Chasms cannot be crossed

 Took a trip to England …

 … means you were born there?

1 1

N N

CHASM

Trips Employees

Countries

Chasms are often created
when joining to lookup
tables.

4.x 3.1

Copyri

ght ©

2004

Chasm Traps, cont’d

 Identfying chasms

 In the following structure, Country is a chasm trap

Setting cardinalities is important!
It helps identify traps like this one

4.x 3.1

Copyri

ght ©

2004

Aliases

 Aliases can resolve chasm traps

 Known as table aliases when writing SQL statements

 Used by BusinessObjects to logically separate the trap
into pieces

SELECT a.country,

 b.country

FROM country a,

 country b

WHERE …

Table aliases

4.x 3.1

Aliases, cont’d

 Countries would be replaced by one (or two) aliases

 Create an alias for each path

 One alias is sufficient

 Two aliases makes the diagram more readable

Employee

Trips

Countries

Destination_Countries

(Countries)

Nationality

(Countries)

Trips

Employees

The base table Countries must
still remain in the Structure pane!

4.x 3.1

 Generic lookup tables can be resolved using aliases

Copyri

ght ©

2004

Self-Restricting Join

Sal_Lookups.type = ‘SAL’

Aliases

Type Code Description

SAL 001 Base Salary

SAL 002 Overtime

SAL 003 Company Car

ABS 001 Holiday

ABS 002 Sick

ABS 003 Sick of Job

Lookups
Lookups

Abs_Lookups

(Lookups)

Sal_Lookups

(Lookups)

Before:

After:

Copyri

ght ©

2004

Aliases

 Recursive relationships can also be resolved

 The depth of those relationships should be known

Emp_ID Name Manager_ID

1 Mayer 5

5 Smith 23

23 Betten 42

42 Byrd

Employees

Employees

Employees

Managers

(Employees)

Before:

After:

Employees.manager_id = Managers.emp_id

NOTE:
There are better ways of
resolving recursive relationships
using database techniques

Copyri

ght ©

2004

Aliases, cont’d

 Every loop can be resolved with aliases

 There are drawbacks to using aliases

 More business terms (objects) will be added

 Those additional terms may confuse some users

 Aliases also CASCADE

Problem #1 Problem #2

4.x 3.1

Copyri

ght ©

2004

Aliases

 Adding aliases

 Insert menu > Alias

 Right-click on a table and choose Alias or Insert Alias

 Aliases can also be detected

 Tools menu > Automated Detection > Detect Aliases…

 Data Foundation > Aliases and Contexts > Detect Contexts…

 Looks for possible chasm traps for you

 May not be a good idea based on previous drawbacks

4.x 3.1

3.1

4.x

59

Demonstration 3.1 4.x

Copyri

ght ©

2004

Contexts

 Contexts can also resolve loops

 A context represents one path or set of joins between tables

Employees

Trips

Context #1: Trips

Context #2: Nationality

Employees.emp_id = Employee_Trips.emp_id

Employee_Trips.trip_id = Trips.trip_id

Trips.country_id = Countries.country_id

Trips

Employees.country_id = Countries.country_id Nationality

Employee

Trips

Countries

3.1 4.x

Copyri

ght ©

2004

Contexts, cont’d

 Contexts resolve the loop at runtime rather than in the Designer

 This means that a context-based solution still has loops!

 The user may be asked to choose between the contexts

 BusinessObjects will try to infer which context to use

 If it can’t figure it out, the user usually chooses a context

 Once a context is chosen, all other joins “disappear”

 Only joins listed in the context will be used to build the final SQL
program

 Using contexts does not force additional objects to be created

3.1 4.x

3.1

Copyri

ght ©

2004

Contexts, cont’d

 Adding contexts

 Data Foundation > Aliases and Contexts > Add Context

 Joins can be Included, Excluded, or Neutral

 Include joins from one side of the loop

 Exclude joins from the other side

 All others will remain neutral (added by default)

4.x

Copyri

ght ©

2004

Contexts, cont’d

 Adding contexts

 Insert menu > Context…

 Name the context and add a description

 Choose the joins that will belong

 WARNING!

 All joins must be added that make business sense

3.1

New joins that are added
after the context is created
must be added to at least
one context ….

… else it will never be
used!

Copyri

ght ©

2004

Contexts, cont’d

 Contexts can be detected

 Tools menu > Automated Detection > Detect Contexts

 Data Foundation > Aliases and Contexts > Detect Contexts

 Use these options carefully

 Don’t accept the proposed contexts blindly

 Use them as an “assist” to create your own contexts

3.1 4.x

3.1

4.x

65

Demonstration 3.1 4.x

66

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

Copyri

ght ©

2004

Starting the User Interface

 Classes and objects can now be created

 Objects reveal portions of the database schema to your users

 Act as “business terms” used to build queries

 Automatically created for multi-dimensional data sources

 Classes organizes those business terms

 Known as folders in BI 4.x

 Should make sense to the ultimate users

 Organizing objects by table rarely make sense

3.1 4.x

Copyri

ght ©

2004

Starting the User Interface, cont’d

 In IDT, this is done by creating a Business layer (.blx)

 File > New > Business Layer

4.x

Copyri

ght ©

2004

Starting the User Interface, cont’d

 In Universe Designer, use the Universe window

 Informally known as the Classes and Objects pane

3.1

Copyri

ght ©

2004

Creating Classes / Folders

 Classes are like directories or folders for objects

 Can be nested (sub-classes are fine)

 Use any of these methods to create a class

 Right-click on the Universe window and choose Class

 Insert menu > Class… or Subclass…

 Business Layer > Business Layer pane > New > Folder

3.1

4.x

3.1

3.1 4.x

Always add descriptions to
all new classes. This will
make the universe easier
to navigate for new users.

Copyri

ght ©

2004

Object Definition

 Objects are business terms used to create queries

 They are SQL expressions when building a universe

 … except for OLAP / multi-dimensional sources

 50 – 75% of objects are usually just a table column

 The remainder are calculations or expressions

3.1 4.x

SELECT <SQL expression 1>,

 <SQL expression 2>

FROM …

WHERE …

Copyri

ght ©

2004

Types of Objects

 Four types of objects that can be created

 Dimensions

 Base information (Example: Customer)

 What you query by (Example: Revenue BY Customer …)

 Details

 Depend on a dimension (Example: Address)

 Measures

 Aggregated calculations (sum, count, min, max, average)

 Conditions

 WHERE clauses that are named

3.1 4.x

Copyri

ght ©

2004

Creating Objects

 Create objects using any of these techniques

 Drag a table into the Universe window

 (creates a class for table, object for each column)

 Drag a table column into an existing class

 Automatically create folder and objects

 Choice when business layer is created

 NOT a good idea unless you need a quick demo universe

 Manually create an object

 Business Layer pane > New > Dimension or Measure or Filter

 Insert menu > Object or Condition

3.1 4.x

4.x

3.1

3.1

4.x

3.1

Copyri

ght ©

2004

The Object Editor

 Create the SQL expression using the SELECT pane

 DO NOT add anything in the WHERE pane

 For experienced developers

 Use condition objects instead (just for WHERE clauses)

 DO ADD descriptions for each object

 At a minimum: Definition and example

 The editors look a little different in each version

 Major concepts are still the same

 We’ll focus on the SELECT expression and List of Values

3.1 4.x

Copyri

ght ©

2004

The Object Editor, cont’d 4.x

Copyri

ght ©

2004

The Object Editor, cont’d 3.1

Copyri

ght ©

2004

List of Values

 Gives the users a “cheat sheet” of object values

 Used to complete query conditions

 Steps to create this list:

 Business Layer > Parameters and List of Values
List of values based on business layer objects

 Object Properties > Properties > Edit

3.1 4.x

4.x

3.1

In BI 4.x, list of values can
also be created from a
static list or custom SQL
statements as part of the
Data Foundation layer

Copyri

ght ©

2004

List of Values, cont’d

 The List of Values editor looks just like a Web query

3.1 4.x

The List of Values query can
have more than one object, as
long as the leftmost object
represents the final value for
the list,

79

Demonstration 3.1 4.x

80

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

Copyri

ght ©

2004

A Word On Testing

 Universe development runs in cycles

 Add a few tables

 Connect them with joins and resolve any problems

 Create a few classes and objects

 TEST using sample queries

 Query editors are part of Universe Designer, IDT

 Could also use Web Intelligence if the universe has been published

 Repeat the process until universe is complete

3.1 4.x

Copyri

ght ©

2004

Integrity Checking

 A sanity check to make sure there are no universe problems

 Not always 100% accurate

 BUT … still very much worth the time to use

 Use the Check Integrity button

3.1 4.x

4.x 3.1

Copyri

ght ©

2004

Publishing

 Right-click on any business layer

 Publish > To a Repository…

4.x

Copyri

ght ©

2004

Exporting

 The way to publish universes in XI 3.1

 File > Export

3.1

Domain here represents the
folder that universe will be
exported to. More than one
universe can be exported at
the same time.

85

Demonstration 3.1 4.x

86

 Introduction

 Getting started

 Making a connection

 Building the foundation

 Resolving inconsistencies

 Creating classes and objects

 Releasing the final version

 Conclusion

Agenda

87

 Creating universes is easy once you know how

 This presentation showed the basics

 Download the examples to practice at home

 Are there more detailed topics?

 Of course!

 But this was geared for “Mere Mortals”

 More advanced topics in future presentations

Key Learnings

88

Questions?

Alan Mayer
Session 0610
Universe Building for Mere Mortals

alan.mayer@solidgrounded.com
214-295-6250 (office)
214-755-5771 (mobile)
214-206-9003 (fax)

mailto:alan.mayer@solidegounded.com
mailto:alan.mayer@solidegounded.com

Thank you for participating.

Please provide feedback on this session by
completing a short survey via the event

mobile application.

SESSION CODE: 0610

Learn more year-round at www.asug.com

